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since (i) and (ii) are also valid forko and Po. This proves (iii).
As an application of Theorem 3, let 1A be real. Then v is real by (ii). Hence v

= 0. Then 1A = 0 by (i). It follows that, for any continuous function h on B,
there exists a sequence of polynomials whose real parts converge uniformly to h on
B. By the maximum modulus principle, the sequence of real parts must converge
uniformly on C, and the limit function will be harmonic on U. Thus we have:
THEOREM 4. Let h be a continuous function on B. Then h can be extended to be

continuous on C and harmonic on U, and the extended function can be uniformly ap-
proximated on C by real parts of polynomials.

This theorem includes the solution of the Dirichlet problem for C, which is known.
The further fact that the resulting harmonic extension of h can be uniformly ap-
proximated by real parts of polynomials seems to be new.
As an application of Theorem 4, one can prove the following theorem,4 whose

proof will be given elsewhere:
THEOREM 5. If A is a uniformly closed algebra of continuous functions on B, which

includes the polynomials, then either each function of A can be extended to be continuous
on C and analytic on U, or A consists of all continuous functions on B.

This generalizes a well-known result of Wermer.5
* This work was done with the support of ONR Contract NONR-222(37).
'A. Zygmund, Trigonometrical Series (New York, 1955).
2 L. Bieberbach, Lehrbuch der Funktionentheorie (Leipzig, 1930), Vol. 2.
3 S. N. Mergelyan, On the Representation of Functions by Series of Polynomials on Closed Sets

("Am. Math. Soc. Translations," No. 85 [1953]).
4 E. Bishop, On the Structure of Certain Measures, ("Technical Reports," No. 11, ONR Contract

NONR-222[37] [1957]).
5 J. Wermer, "On Algebras of Continuous Functions," Proc. Am. Math. Soc., 4, 866-869, 1953.
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We shall show that the recent results of R. Bott" 2: 7r2,(U(q)) = Z/q!Z and the
periodicity of the stable homotopy groups of SO(n) and U(n) imply the
THEOREM. For s _ 3, the sphere S4,-1 of dimension 4s - 1 is not parallelizable.
Recall that a differentiable closed manifold of dimension n is said to be paralleliz-

able if it admits a continuous field of tangent n-frames. It is well known that 84s+1,
s > 1 is not parallelizable.3' 7 8 Thus S1, S3, and S7, which are known to be paral-
lelizable, are the only spheres which have this property.

Let a: SO(n) -- U(n) and f3: U(n) -* SO(2n) be the standard injections.
a sends a matrix A e SO(n) into itself, the entries of a(A) being regarded as com-
plex numbers. ,3 sends C = (c.,,) into the 2n X 2n matrix W, given by

W2u,2v = W2u-,2v-1 = av, W2u-1,2v = -W2u,2v-1 = bu f

(1 . u, v _ n, cu., = a.,, + ibu,,,). We are interested in the induced homomor-
phisms on homotopy groups a*::7rk(SO(n)) 7rk(U(n)), 3*:wrk(U(n)) -*rk(SO(2n)),
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and more particularly in the composition 3.a.: Tk(SO(n)) -0 irk(SO(2n)).
LEMMA 1. In the stable range, i.e., for k < n - 1, one has ,8Ia. = 2i., where i*:

rk(SO(n)) -- lrk(SO(2n)) is induced by the inclusion i: SO(n) -- SO(2n).
Since by R. Bott,' 7r4,_1(SO) and 7r4,-i(U) are infinite cyclic, the homomorphisms

a*: ir4s_1(SO(n)) -> r4s_1(U(n)) and A*: 7r4,-1(U(n)) -1 7r4-1 (SO(2n)) are repre-
sented (in the stable range, 4s + 1 < n) by multiplication with integers as, resp.
b, (which are determined only up to sign, since we do not specify our choice for the
generators of 7r4s-1(SO) and 7r4,-1(U)). From the above lemma follows the
COROLLARY: asb, = 2.
It is not difficult to obtain a, = 2, a2 = 1.
LEMMA 3. a, and b, are periodic of period 2, i.e., a,+2 = as, bs+2 = b,. (This in-

formation is not needed for the theorem to be proved).
Consider now the commutative diagram in which n is to be large (2s < n):

7r4s_1(S0(2n))P74s-1(V2n,2n-s+2) r4,-2(SO(4s - 2)) -( 0

7r4,.1(U(n)) .*>. 7r4s-l(VWn,n-2s+1) 7r4,,.2(U(2s - 1)) -* 0,
where the rows are portions of the homotopy sequences of the fibrations SO(2n)/
S0(4s - 2) = V2n,2n 4s+2 with projection p, and U(n)/U(2s - 1) = Wnn-2s+l
with projection q, respectively. A': U(n)/U(2s - 1) -- S0(2n)/S0(4s -2) is
induced by #: U(n) -- SO(2n).
By R. Bott, r4s-2(U(2s - 1)) Z/(2s - 1)!Z. Hence q* is (up to sign) the

multiplication by (2s - 1)!. By B. Eckmann,5 section 3.6, T4s-1(V2n,2n-4s+2)
Z4. For s . 3, (2s - 1)! is divisible by 4, and thus 3'*q* =P = 0.
We need the following, probably well-known
LEMMA 2. If S4,_1 is parallelizable, then 7r4,2(SO(4s -2)) = 0.
Let us assume now that S4,-1 is parallelizable. Then p.: r4,_1(SO(2n))

w4s-1(V2n,2n-4s+2) is an epimorphism and hence maps a generator of 7r4,_1(S0(2n))
into a generator of 7r4s,1(V2n,2n-4s+2). Therefore, P*/*Eu = bs EV, where eu, Ev
are generators of r4,_l(U(n)), 4s-1(V2n,2n-s+2), respectively. By Lemma 1, b, is
either 1 or 2 and hence pi* 5=$ 0. Consequently, s < 3.

Proof ofLemma 1: Let A be the 2n X 2n matrix

Ed
VE 0J

i.e., aj = bi+nj for 1 _ i _ n and an bi-nj for n < i < 2n. Since

i(X)= (X )

we have

i(X)*A*i(X)*A = ( 0X)

LetM be the 2n X 2n matrix given by

j 62i-IJ for 1 < i . n,
i 2(G-O) ,} for n < i < 2n.
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It is easily verified that if ul, V1, U2, V2, . . . , u, Vn are the row vectors of a 2n X
2n matrix Y, then the matrix Me Y has the row vectors ul, U2, ...., U,, V1, v2,2. . ..
Vn. This implies, using (Y .M')' = M* Y' that if Y has column vectors u'1, V'i,
u'2, v'2, . ..., u'n, v'n, then YAM' has the column vectors u'1, . .. , u', v'1, . . .VI
From this it follows that

,8a(X) = M * i(X) *A * i(X) -A M'

for any matrix X e SO(n). Notice that |A = (-1)n and IM = ( 1)/2
Since we are interested in the stable range (k - 1 < n), there is no loss of generality
in assuming n divisible by 4. Then IA = IM = +1. From the existence of
paths from A and M to the unit 2n X 2n matrix, follows: Aca is homotopic to the
map SO(n) -- SO(2n), which sends X into i(X) .i(X) = i(X2). By B. Eckmann,'4
Satz II, for any map : Sk -O SO(n), the map f2 given by f2(x) = [f(x) ]2 represents
2{f}, where {f} is the homotopy class of f. This proves Lemma 1.

Proof of Lemma 2: By P. J. Hilton and J. H. C. Whitehead,6 Lemma (4.12), if
S4,_1 is parallelizable, then a4,-2 = *1i, where a4,-2 is the generator of r4,1-(S4,-2)
the homomorphism 4*: 7r4,-1(SO(4s - 1)) - 7r4,1(S4,_2) is induced by the pro-
jection q: SO(4s - 1) -* S4U2 and A is some element in 7r4,.1(S0(4s - 1)).
From the homotopy sequence of SO(4s - 1)/SO(4s - 2) = S4-2, i.e.,

*r4,1-(S0(48 - 1)) 7,r4-l(S48-2)
7r4,.2(SO(4s - 2)) 7r4,-2(SO(4s - 1)) -O 0,

and the fact that 0* is an epimorphism, it follows that

7r4,.2(SO(4s - 2)) -7r4,-2(SO(4s- 1))

(if S4,.l is parallelizable).
Consider the homotopy sequence of S0(4s)/S0(4s - 1) = 4s-12

*-* 7r4,-(SO(48)) 4* ) 74,--1(S4,--1) -* r4,2(SO(4s - 1)) -* 7r4,2(SO(4,)) = 0.
Since S4,-l is assumed to be parallelizable, AC'* is an epimorphism and therefore,
7r45_2(SO(4S- 1)) = 0. This proves Lemma 2.
Proof of Lemma 3: By formula (3.4) of R. Bottj the space of loops over SO

has the same homotopy groups as the quotient space SO/U. Thus for 2s < n,

7r4,l(QSO(2n)) = 7r4,_1(SO(2n)/U(n)).
However, 7ro4,1(QSO(2n)) ir4,(SO(2n)), this latter group being 0 for odd s and
Z2 for s even. Since the order of 7r4,_1(SO(2n)/U(n)) is clearly equal to b,, we ob-
tain: b, = 1 or 2 according as to whether s is odd or even, respectively. The
equality a, b, = 2 yields the result for a,, which could also have been obtained
directly using (3.3) of Bott. 1

LEMMA 4. For s odd _ 3, the generator of 74,1_(S4,_2) does not belong to Im q*,
where 4.: 7r4,1(S0(4s - 1)) 7r4,-_1(S4,2) is induced by the natural projection.

Proof: We have seen that s > 3 implies p.fi* = 0. By Lemma 3, DU is an epi-
morphism for s odd. Consequently, p. must be trivial and 7r4,2(SO(4s -2))
Z4. The exact homotopy sequence of the fibration SO(4s - 1)/SO(4s- 2) =
S4,_2 then yields the result.
The original version of this paper did not contain Lemmas 3 and 4. Lemma 3

was also observed by the referee. I understand from R. Bott that J. Milnor has
also obtained our theorem.
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